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Abstract

A neural network-based method has been developed for the prediction of �-turns in proteins by using
multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are
used where the first-sequence structure network is trained with the multiple sequence alignment in the form
of PSI-BLAST–generated position-specific scoring matrices. The initial predictions from the first network
and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to
refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been
achieved by using evolutionary information contained in the multiple sequence alignment. The final network
yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426
nonhomologous protein chains. The corresponding Qpred, Qobs, and Matthews correlation coefficient values
are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published �-turn
prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been
developed based on this approach.
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The secondary structure of a protein consists of � helices,
�-sheets, loops, and tight turns. Helices and sheets are re-
ferred to as regular structures, whereas loops and tight turns
belong to the category of irregular secondary structures.
Tight turns are irregular structures with nonrepeating back-
bone torsion angles and often have at least one hydrogen
bond (Chou 2000). Depending on the number of residues
forming the turn, tight turns are classified as �-turns,
�-turns, �-turns, �-turns, and �-turns. �-Turn is a four-
residue reversal in a protein chain that is not in an �-helix,
and the distance between C�(i) and C�(i + 1) is < 7 Å
(Richardson 1981; Rose et al. 1985). About one-fourth of all
protein residues are in �-turns.

They are responsible for the compact globular shape of
proteins because of the ability to reverse the protein chain
direction within a span of several residues. Also, �-turn
formation is an important stage in protein folding (Takano
et al. 2000). Moreover, the occurrence of �-turns on sol-
vent-exposed surfaces makes them suitable candidates for
molecular recognition processes and interactions between
peptide substrates and receptors (Rose et al. 1985).

Therefore, it is useful to develop an accurate method for
identifying the location of �-turn within a protein sequence.
It not only would be a small step toward the overall predic-
tion of three-dimensional structure of a protein from its
amino acid sequence but also would be helpful in fold-
recognition studies and identification of structural motifs
such as a �-hairpin.

�-Turn prediction methods

In past, a number of methods have been developed for
�-turn prediction. The majority of these methods are em-
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pirically based on the “positional preference approach,”
which uses the residue propensities at positions i to i + 3 to
calculate the positional frequencies and conformational pa-
rameters. A simple empirical method for predicting �-turns
was first introduced by Chou and Fasman (1974). Later,
Garnier et al. (1987) included turn as one of the four con-
formations in their empirical algorithm that used informa-
tion over 17 residues. In 1988, Wilmot and Thornton de-
rived �-turn parameters from a set of 59 proteins from the
frequency distributions of different turn types based on the
method of Chou and Fasman (1974, 1979). Later, the posi-
tional preference approach was extended, taking into ac-
count the correlations between the pairing of residues.
Based on “correlation coupling effects,” two models–the
1–4 and 2–3 correlation model and the sequence-coupled
model–were proposed (Chou 1997; Chou and Blinn 1997;
Zhang and Chou 1997). Both these models were based on an
first-order Markov chain involving conditional probabilities
of residues occurring in �-turns. A method, BTPRED,
based on neural network was developed by Shepherd et al.
(1999) for predicting the location and type of �-turns in
proteins.

Inferences from previous study

All the existing �-turn prediction methods have been trained
on different training sets and have reported accuracy on
different test sets. Recently, we have evaluated the perfor-
mance of all the methods on a uniform data set of 426
nonhomologous protein chains by sevenfold cross-valida-
tion technique (Kaur and Raghava 2002). In the evaluation
study, we have shown that the prediction accuracy can be
improved by training on a new data set and by inclusion of
secondary structure information. By using parameters
learned on a new data set, the statistical methods can
achieve the accuracy level equal to that of a sophisticated
method such as the neural network-based method BTPRED.
It has been observed that BTPRED outperforms all other
methods, and its accuracy depends on the accuracy of sec-
ondary structure prediction. Thus, there is a need to develop
a prediction method based on neural network, trained on a
new and larger data set, and to include the secondary struc-
ture information predicted from a more accurate method
such as PSIPRED in order to obtain new updated weights.

To begin, the network is first trained with single se-
quences, and then a second filtering network is used to
process the output from the first turn/nonturn network and is
trained by using secondary structure information from
PSIPRED (Jones 1999). Together, these two networks have
resulted in substantial improvement in prediction accuracy
compared with that of previous methods, by training on a
larger data set and secondary structure information from
PSIPRED. The method shows Matthews correlation coeffi-
cient (MCC) value of 0.41 compared with the MCC of 0.35
for BTPRED.

A new approach to �-turn prediction

It has been shown in the past that the prediction from a
multiple alignment of protein sequences rather than a single
sequence results in 6% to 7% increase in prediction accu-
racy of secondary structure prediction method (Rost and
Sander 1993). PSIPRED is a method of protein secondary
structure prediction based on a neural network evaluation of
PSI-BLAST (Position-specific iterated blast)–generated
profiles. The success of PSIPRED and its top ranking
among other methods can be attributed to the fact that it
uses PSI-BLAST, which searches homologs against a
nonredundant database to generate multiple sequence align-
ment profiles. The approach so used by PSIPRED is applied
in the present study for �-turn prediction, and it might well
be expected that by using PSI-BLAST profiles, the �-turn
prediction method will show measurable improvement in
accuracy. This is the first time that multiple alignment in-
formation is specifically used for the prediction of �-turns.
Therefore, the present study addresses the question of
whether the combination of sophisticated technique neural
network and multiple alignment information can lead to
improvement in �-turn prediction accuracy.

It is interesting to note that a significant improvement in
prediction accuracy compared with the single sequence has
been achieved by training the net on PSI-BLAST–generated
position-specific scoring matrices. The method shows MCC
value of 0.37 compared with 0.31 for single sequence.
Moreover, prediction from a second filtering network
trained on predictions from the first network and predicted
secondary structure information from PSIPRED yields a
MCC value of 0.43 and a marked improvement in other
performance statistics.

Results

Statistical analysis of �-turns: amino acid preferences

The sequences of �-turns have been analyzed to search for
amino acid preferences. (The positional frequencies of each
amino acid in each of the four positions are included as
Electronic Supplemental Material.) It can be noted that at
position i, Pro, Asp, Asn, Cys, and Ser all exhibit a signifi-
cant preference to be at the first position of a �-turn. At
position i + 1, Pro is the most strongly preferred amino acid,
followed by Asp, Ser, and Asn. Position i + 2 is dominated
by Gly and, to a lesser extent, by Asn. Also, there are
significant preferences for Asp and Ser. There is a strong
preference for Gly at i + 3 position. All these preferences
are in accordance with the preferences noted by Wilmot and
Thornton (1988).

Prediction of �-turns

In this work, we have used unbalanced sets containing the
natural ratio of �-turn residues and non–�-turn residues as
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found in proteins. The results averaged over seven tests are
presented. The value of the learning parameter has been set
to 0.0001. Training have been performed for 5000 epochs
for both networks, after which the learning has been termi-
nated when the error reached a stable value; differences
between errors in subsequent steps become sufficiently
small. Prediction performance measures have been aver-
aged over seven sets and are expressed as the mean ± SD.

Prediction with single sequences

The net is trained with single sequences encoded as binary
bits and contains no secondary structure information, with a
window size of nine residues. When applying a sevenfold
cross-validation test on a data set containing single se-
quences, we found that the network reached an overall ac-
curacy of 71.6 ± 0.7%. The prediction results are presented
in Table 1. The net has achieved an MCC of 0.31 ± 0.01,
which is comparable to that of BTPRED with a single net-
work; however, the percentage accuracy is lower than that
of BTPRED. A comparison of MCC and Qpred/Qobs values
of BTPRED (Shepherd et al. 1999) and other statistical
methods tested on the same data set (Kaur and Raghava
2002) has also been made (see Electronic Supplemental
Material). The probability of correct prediction is better than
with statistical methods but lower than that of BTPRED.
However, the coverage of turns is maximum among all the
methods. Moreover, with single sequences, as input to the
network, the performance is better than that of statistical
methods.

Prediction with single sequences and
secondary structure information

The next improvement in prediction accuracy is expected by
using a second filtering network and incorporating predicted

secondary structure information in training. The output ob-
tained from first-level 9(21)-10-1 network and secondary
structure is presented to the second-level 9(4)-10-1 network.
The secondary structure information from two different
methods, PHD and PSIPRED, is used. The improvement in
prediction accuracy in both the cases is evident from the
results of 9(4)-10-1 network shown in Table 1. We achieved
final MCC for turn/nonturn prediction of 0.53 with observed
secondary structure information (DSSP) and 0.41 ± 0.01
with PSIPRED predicted secondary structure information.
This is a substantial improvement on the MCC of 0.35 of
BTPRED. The net has an accuracy of 74.3 ± 1.5%. A more
than 10-percent gain is obtained in probability of correct
prediction. Finally, better predictions results with PSIPRED
in comparison to PHD shows that the accuracy of �-turn
prediction depends crucially on the accuracy of secondary
structure prediction method.

Although our data set is nonhomologous, it contains
some of the protein chains used to train the PHD and
PSIPRED. As a consequence, we have cross-validated the
results by removing those proteins from our data set that
were used to develop PHD and PSIPRED. The difference in
prediction results is very small or almost negligible, as evi-
dent from the values given in Table 1.

Prediction with multiple alignment

To further enhance the prediction performance, the multiple
sequence alignment is implemented for prediction. The
first-level network 9(21)-10-1 is trained on PSI-BLAST–
generated position-specific matrices. The comparative re-
sults of network with single sequence and with multiple
alignment are shown in Table 2.

It is clear from the results that the network performance
is significantly improved when PSI-BLAST–generated
scoring matrices are used as input, compared with single
sequence. The prediction accuracy is improved from 71.6%

Table 1. Results of �-turn/nonturn predictions by using single
sequence with and without secondary structure information

Network
with single
sequence

Network with single
sequence and secondary structure

DSSP PHD PSIPRED

Qtotal 71.6 ± 0.7 79.3 ± 1.1 72.6 ± 1.1 74.3 ± 1.5
(72.5 ± 0.9) (74.6 ± 0.8)

Qpred 44.1 ± 1.3 55.4 ± 2.0 46.1 ± 1.5 48.4 ± 1.7
(47.5 ± 1.3) (48.1 ± 1.5)

Qobs 57.3 ± 2.6 80.8 ± 2.7 67.1 ± 2.6 71.2 ± 3.0
(66.8 ± 2.5) (70.4 ± 3.2)

MCC 0.31 ± 0.01 0.53 ± 0.01 0.38 ± 0.01 0.41 ± 0.01
(0.38 ± 0.01) (0.41 ± 0.01)

Values in parentheses correspond to the prediction results obtained by
excluding the proteins that were used to develop PHD and PSIPRED
methods.

Table 2. Summary of prediction results by using single
sequence and multiple alignment

Single sequence Multiple alignment

First
network

Second
network

First
network

Second
network

Qtotal 71.6 ± 0.7 74.3 ± 1.0 73.5 ± 1.5 75.5 ± 1.7
(74.6 ± 1.4) (75.8 ± 1.6)

Qpred 44.1 ± 1.3 48.4 ± 1.7 47.2 ± 1.9 49.8 ± 2.0
(48.6 ± 1.8) (49.9 ± 1.9)

Qobs 57.3 ± 2.6 71.2 ± 2.0 64.3 ± 2.2 72.3 ± 2.6
(70.4 ± 2.0) (70.8 ± 2.0)

MCC 0.31 ± 0.01 0.41 ± 0.01 0.37 ± 0.01 0.43 ± 0.01
(0.41 ± 0.01) (0.43 ± 0.01)

Values in parentheses correspond to the prediction results obtained by
excluding the proteins that were used to develop PSIPRED method.

Prediction �-turn proteins multiple alignment network
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to 73.5%. The most dramatic improvement is achieved in
MCC value. It is increased from 0.31 with single sequence
to 0.37 with PSI-BLAST. Thus, substantial improvements
in prediction performance have come from the use of PSI-
BLAST scoring matrices in preference to binary encoding
of single sequences.

Prediction with multiple alignment and
secondary structure information

Accuracy is further improved by using a second filtering
network and secondary structure information. Output from
the first network (trained on PSI-BLAST scoring matrices)
and secondary structure predicted by PSIPRED is applied to
the second network, which is trained for an additional 5000
cycles. Use of PSIPRED-predicted secondary structure
and multiple alignment information improves the MCC to
0.43 ± 0.01 and prediction accuracy to 75.5 ± 1.7%, the
best available at present (Table 2). The final network yields
Qpred value of 49.8 ± 2.0% and Qobs value of 72.3 ± 1.6%
and is marginally better than the results of second-level
network with single sequence. Therefore, the use of mul-
tiple alignment information in the form of PSI-BLAST po-
sition-specific matrices as input to the first network and
filtering by second network has further improved the level
of prediction performance.

The prediction results with multiple alignment informa-
tion have also been validated by removing those proteins
from our data set that were used to develop PSIPRED. The
results, given in Table 2, show negligible differences in
performance measures except in Qobs value.

Receiver operating characteristic results

Performance of different networks has also been evaluated
by calculating the area under the receiver operating charac-
teristic (ROC) curve. Figure 1 shows the ROC curves for
four different networks. The four curves have been com-
pared by computing the area under the curves. The corre-
sponding areas under the curves are as follows: single se-
quence, 0.67; multiple alignment, 0.72; single sequence
with secondary structure, 0.76; and multiple alignment with
secondary structure, 0.77. These reflect the better discrimi-
nation of network system, which consists of first network
that is trained on multiple alignment profiles, and a second
network that is trained on secondary structure in comparison
to other three network systems.

Discussion

It is known that using information from sequence align-
ments significantly improves protein secondary structure
prediction. Typically, more divergent profiles yield better
predictions. The recent improvement in secondary structure
prediction method such as PSIPRED has resulted from the
use of improved searching tool for multiple sequence align-
ment such as PSI-BLAST. PSI-BLAST searches the ho-
mologs against a larger database such as a nonredundant
database. So, a part of success of PSIPRED can also be
contributed to the growth of sequence databases (switch-
ing from SWISS-PROT, currently containing 90,000 se-
quences, to a nonredundant database containing 500,000
sequences). Moreover, it has also been shown recently that

Figure 1. ROC curves for four different network systems. Solid line indicates single sequence; dotted line indicates multiple
alignment; dashed line indicates single sequence with secondary structure; and solid/dotted line indicates multiple alignment with
secondary structure.
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using larger databases and PSI-BLAST raises the accuracy
of secondary structure prediction from 72% to 75% (Przy-
bylski and Rost 2002).

Here, we have used the same approach for �-turn predic-
tion, and it differs significantly from the earlier methods.
We have developed a method based on neural networks by
using multiple alignment information in the form of PSI-
BLAST–generated scoring matrices to improve the �-turn
prediction accuracy. From this study, it is clear that a com-
bination of neural network and evolutionary information
contained in multiple sequence alignment has improved the
performance of �-turn prediction method. There are three
possible explanations for the improvements obtained: (1)
use of large and recent data set for learning; (2) use of
PSI-BLAST profiles, which finds more distantly related ho-
mologs than pair-wise search methods against a nonredun-
dant database; and (3) use of a second filter network, which
includes predictions from the first network and secondary
structure information from a highly successful method
PSIPRED.

To begin, the net is first trained with single sequences
encoded as binary bits. The results of prediction when net is
trained on single sequences are better than statistical meth-
ods and comparable to BTPRED results with a single net-

work. It has MCC of 0.31. A second-level network has been
used to refine the results produced by the first network. In
second network, at each position in the window, the turn/
nonturn outputs from the first network and predicted sec-
ondary structure states are used in place of sequence infor-
mation as input to the network. The architecture of the
second-level network is the same as for the first-level net-
work. The performance is further improved by using a sec-
ond filtering network and secondary structure information.
The accuracy is improved by 3%, and MCC is raised from
0.31 to 0.41. A significant improvement in Qpred and Qobs

values has also been achieved. The effect of two secondary
structure prediction methods, PHD and PSIPRED, on �-turn
prediction accuracy has also been assessed, and it has been
found that �-turn prediction by incorporating PSIPRED-
predicted secondary structure is more accurate for the same
cross-validated set than is that for PHD. The higher predic-
tion accuracy of PSIPRED compared with PHD is the rea-
son of better �-turn prediction results with PSIPRED in
comparison to PHD.

A new approach that uses PSI-BLAST to generate mul-
tiple sequence alignment profiles has been implemented for
�-turn prediction. The first-level net is trained on the PSI-
BLAST–generated position-specific matrices, which are

Figure 2. The network system used for �-turn prediction. The network system consists of two networks: first-level sequence-to-
structure network and second-level structure-to-structure network. Shaded circles indicate basic cell containing 20 + 1 units to code
residues at that position in the window. Here, window size is nine. Square boxes indicate hidden layer containing 10 units. In
second-level network, four units encode each residue. Solid circles indicate prediction obtained from first network; open circles,
secondary structure state (coil, helix, and strand).

Prediction �-turn proteins multiple alignment network
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produced as part of PSIPRED prediction method. MCC is
dramatically increased, from 0.31 of single sequence to
0.37, which is even better than that with BTPRED. Im-
provement in other performance measures can also be ob-
served. So, �-turn prediction accuracy is improved by tak-
ing into account the information brought about by multiple
alignment matrices. The overall results in comparison to
single sequence shows an additional gain in performance,
and the method reaches the final accuracy of 73.5%. The
reason for such a better performance is that at alignment
level, PSI-BLAST produces profiles by searching homologs
against a large nonredundant database. It is a sensitive scor-
ing system, which involves the probabilities with which
amino acids occur at various positions. As expected, the
prediction accuracy is further improved by using a second
filtering network trained on predictions from first network,
along with predicted secondary structure information. The
MCC is raised from 0.37 to 0.43, the maximum value for
�-turn prediction achieved so far.

The improvements in �-turn prediction performance so
obtained are significant, especially in the context of overall
increase in prediction accuracy of secondary structure pre-
diction, and will be helpful to the researchers working in the
field of fold recognition. The method depends on the accu-
racy of secondary structure prediction method. The sug-
gested approach has a larger potential for further improve-
ment of prediction accuracy, especially in view of the fur-
ther extension or growth of the sequence database of
proteins and a further improvement in protein secondary
structure prediction.

Materials and methods

The data set

In present study, the data set is comprised of 426 nonhomologous
protein chains as described by Guruprasad and Rajkumar (2000).
In this data set, no two protein chains have > 25% sequence iden-
tity. The structure of these proteins is determined by X-ray crys-
tallography at �2.0-Å resolution. Each chain contains at minimum
one �-turn. The PROMOTIF program has been used to assign
�-turns in proteins (Hutchinson and Thornton 1996).

The extracted �-turn residues have been assigned different sec-
ondary structure states by DSSP (Kabsch and Sander, 1983). It has
been found that the maximum number of �-turn residues have T
state followed by S state in their nomenclature (see Electronic
Supplemental Material).

Sevenfold cross-validation

A prediction method is often developed by cross-validation or
jack-knife method (Chou and Zhang 1995). Because of the size of
the data set, the jack-knife method (individual testing of each
protein in the data set) was not feasible, so a more limited cross-
validation technique has been used, in which the data set is ran-

domly divided into seven subsets, each containing equal number of
proteins. Each set is an unbalanced set that retains the naturally
occurring proportion of �-turns (∼ 25%) and nonturns.

The data set has been divided into training set, validation set,
and testing set. The training set is consisted of five of these sub-
sets. The network is validated for minimum error on validation set
to avoid over-training, and the network is tested on the excluded
set of proteins, the testing set. This has been done seven times to
test for each subset. The final prediction results have been aver-
aged over seven testing sets.

Neural network architecture

In the present study, two feed-forward back-propagation networks
with a single hidden layer are used. Both the networks have input
window that is nine residues wide, and have 10 units in a single
hidden layer. The target output consists of a single binary number
and is one or zero (true or false). The window is shifted residue by
residue through the protein chain, thus yielding N patterns for a
chain with N residues. This is in accordance with the previous
work (Shepherd et al. 1999), which showed that a window size of
nine gave optimal prediction results. The architecture of the net-
work system used in present work is shown in Figure 2.

For the neural network implementation and to generate the neu-
ral network architecture and the learning process, the publicly
available free simulation package SNNS, version 4.2, from Stutt-
gart University is used (Zell and Mamier 1997). It allows incor-
poration of the resulting networks into an ANSI C function for use
in stand-alone code. A linear activation function is used. At the
start of each simulation, the weights are initialized with the random
values. The training is carried out by using error back-propagation
with a sum of square error function (SSE; Rumelhart et al. 1986).
The magnitude of the error sum in the test and training set is
monitored in each cycle of the training. The ultimate number of
cycles is determined where the network converges. During the
testing of network, a cutoff value is set for each network, and the
output produced by the network is compared with the cutoff value.
If the output is greater than the cutoff value, then that residue is
taken as a �-turn residue, whereas if it is lower, it is considered as
a non–�-turn. For each network, the cutoff value is adjusted that it
yields the highest accuracy for that network. An overview of each
network is given below.

First level: sequence-to-structure net

The input to the first network is either single sequence or multiple
alignment profiles. Patterns are presented as window of nine resi-
dues, in which a prediction is made for the central residue. With
single sequence input, binary encoding scheme has been used. In
this scheme, each amino acid at each window position is encoded
by a group of 21 inputs, 20 units code for each possible amino acid
type at that position and one is used when the moving window
overlaps the amino- or carboxy-terminal end of the protein. In each
group of 21 inputs, the input corresponding to the amino acid type
at that window position is set to one, and all other inputs are set to
zero.

With multiple alignment profile input, the position-specific
scoring matrix generated by PSI-BLAST has been used as input to
the neural network. The matrix has 21 × M real-number elements,
where M is the length of the target sequence. Each element rep-
resents the likelihood of that particular residue substitution at that
position. Thus, 21 real numbers rather than binary bits encode each
residue.
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Second level: Structure-to-structure net

An important feature of the predictions generated by the first net-
work is that they are uncorrelated; that is, the network made pre-
diction for each residue in isolation without reference to neigh-
boring prediction. The correlation can be taken into account by
using a second level, a structure-to-structure network. Qian and
Sejwonski (1988) achieved 1% improvement in secondary struc-
ture prediction accuracy by using a second filtering network.

The input to second filtering network is predictions obtained
from the first net and the predicted secondary structure. Four units
encode each residue, in which one unit codes for turn/nonturn
prediction from first network, and it is either set to one or zero. The
remaining three units code for three secondary structure states
(helix, strand, and coil; Fig. 2).

Secondary structure information is also encoded by the actual
probabilities of three states provided in the output of the PSIPRED
prediction. The probabilities are just the strengths of the prediction
for each of the three target states (helix, strand, coil) and are
represented by a real number in the range zero to one. The actual
score of turn/nonturn predictions obtained from first network is
also used as input to the network in the place of binary bits.

Multiple alignment or position-specific scoring matrices

PSIPRED uses PSI-BLAST to detect distant homologs of a query
sequence and generate position-specific scoring matrix as part of
the prediction process, and here, we have used these intermediate
PSI-BLAST–generated position-specific scoring matrices as a di-
rect input to the first-level network. The matrix has 21 × M ele-
ments, where M is the length of the target sequence, and each
element represents the frequency of occurrence of each of the 20
amino acids at one position in the alignment (Altschul et al. 1997).

Secondary structure prediction and assignment

The second filtering network is trained with output obtained from
first network and predicted secondary structure information. In
order to prove that �-turn prediction accuracy depends on the
accuracy of secondary structure prediction, two methods have been
used for predicting secondary structure: PHD (Rost 1996) and
PSIPRED (Jones 1999). The protein secondary structure assign-
ment by DSSP is used to establish an upper bound of predictive
performance. DSSP provides eight states assignment of secondary
structure (Kabsch and Sander 1983). The eight states of DSSP
have been decomposed into three states (G, H, and I are taken as
helices; B and E as strand; and the rest as coil).

Filtering the prediction

Because the prediction is performed for each residue separately,
the final prediction includes a number of unusually short �-turns of
one or two residues. Although the second-level structure-to-struc-
ture network corrects the tendency of the first-level sequence-to-
structure network to predict too short �-turns, the final predictions
still contain single residue �-turns. To exclude such unrealistic
turns, we have applied simple filtering rule, the “state-flipping”
rule, as described in the work of Shepherd et al. (1999). A set of
four rules have been used in the following order: flip isolated
nonturn predictions to turn (i.e., t-t → ttt), flip isolated turn pre-
dictions to nonturn (i.e., -t- → —), flip isolated pairs of turn pre-
dictions to nonturn (i.e., -tt- → —), and flip the adjacent nonturn
predictions to turn (i.e., -ttt- → tttt- or -tttt).

Performance measures

Performance measures used are categorized as the following.

Threshold-dependent measures

Four parameters have been used in present work to measure the
performance of prediction method as described by Shepherd et al.
(1999). Following is the brief description of these parameters: (1)
Qtotal (or prediction accuracy) is the percentage of correctly clas-
sified residues, (2) MCC accounts for both over and under-predic-
tions, (3) Qpred is the percentage of correct prediction of �-turns
(or probability of correct prediction), and (4) Qobs is the percentage
of observed �-turns that are correctly predicted (or percent cover-
age). The parameters can be calculated by following equations:

Qtotal = �p + n

t � � 100

MCC =
pn − ou

��p + o��p + u��n + o��n + u�

Qpredicted = � p

p + o� � 100

Qobserved = � p

p + u� � 100

where p and n are number of correctly classified �-turn and non–
�-turn residues, respectively; and o and u are the number of in-
correctly classified �-turn and non–�-turn residues, respectively.

Threshold-independent measures

One problem with the threshold-dependent measures is that they
measure the performance on a given threshold. They fail to use all
the information provided by a method. The ROC is a threshold-
independent measure that was developed as a signal processing
technique. For a prediction method, ROC plot is obtained by plot-
ting all sensitivity values (true-positive fraction) on the y-axis
against their equivalent (1-specificity) values (false-positive frac-
tion) for all available thresholds on the x-axis. The area under the
ROC curve is taken as an important index because it provides a
single measure of overall accuracy that is not dependent on a
particular threshold (Deleo 1993). It measures discrimination, the
ability of a method to correctly classify �-turn and nonturn resi-
dues. Sensitivity (Sn) and specificity (Sp) are defined as

Sn =
p

p + u
and Sp =

n

n + o

Electronic supplemental material

The supplemental information has Protein Data Bank codes of
protein chains used in the present study. Supplemental Table 1
contains the composition of seven different training sets. Supple-
mental Table 2 has secondary structure composition of �-turn
residues in terms of DSSP eight states. Supplemental Table 3
contains the �-turn positional frequencies for all 20 amino acids.
Supplemental Table 4 contains the results of �-turn/nonturn pre-
dictions, with a single network trained on single sequences and its
comparison with other methods tested on the same data set.
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Supplemental Figure 1 shows a sample output of �-turn/nonturn
predictions by the BetaTPred2 server.

Availability

The program is implemented on the Web server BetaTPred2, avail-
able at http://www.imtech.res.in/raghava/betatpred2/ by using
CGI/Perl script. The SNNS-generated network is converted into C
program and is used as an interface.

Users can enter primary amino acid sequence in fasta or free
format. The residues can be predicted as �-turn or non–�-turn
residues. Prediction can also be e-mailed back to them after a short
period of time, depending on the server load.
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